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ABSTRACT
Adynamic state-spacemodel is proposed topredict the crash counts.
The outcomes of a multivariate regression model that identifies
dynamics relationship between the examined factors and the traffic
crashes have been incorporated in the proposed sate-space modes
as an initial value todescribe the state transitionprocess. TheKEF and
VBAKF algorithms have been developed to estimate the proposed
models and the developed models are referred to as SSMKEF and
SSM-VBAKF models, respectively. The findings suggest that the pro-
posed state-space model has better prediction accuracy and robust-
ness with the VBAKF algorithm as the estimation method and the
prediction accuracy that measured by RMSD can be improved by
23.81%compared to theKEF algorithm. The findings suggest that the
proposed SSM-VBAKF and SSM-KEF models can better address the
heterogeneity issues and a significant number of zeros in correlated
crash data, and provide sufficient fit to the multivariate correlated
crash data.
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1. Introduction

Although motor vehicle travel provides an unparalleled degree of mobility and is a major
mean of transportation in the United States, according to the report of NHTSA (NHTSA
2017a), traffic crashes were the leading cause of death. Except a slight increase in 2012,
there has been ageneral downward trendof traffic fatalities over thepast decade. However,
in the most recent two years, there are two large percentage increases in traffic fatalities
(NHTSA 2017b). One is in 2016, there were 1976 more traffic fatalities than in 2015 – a 5.6-
percent increase, which is lower than the 8.4-percent increase from 2014 to 2015. In total,
37,461 people were killed in traffic crashes on roadways during 2016 (NHTSA 2017b). To
reduce deaths, injuries, and relevant medical costs from traffic crashes, with the data that
obtained frompolice reports, localweather stations, and state highway-asset-management

CONTACT Chunjiao Dong cjdong@bjtu.edu.cn Key Laboratory of Transport Industry of Big Data Application
Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, No. 3, Shangyuancun,
Haidian District, Beijing 100044, People’s Republic of China

© 2019 Hong Kong Society for Transportation Studies Limited

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2019.1594446&domain=pdf&date_stamp=2019-03-27
mailto:cjdong@bjtu.edu.cn


2 C. DONG ET AL.

databases, many methods have been developed to investigate the relationship between
the influence factors and traffic crash outcomes and intend to provide effective coun-
termeasures. Lord and Mannering (2010) provided a comprehensive review about the
methods and approaches that previously applied to traffic crash analyses along with their
strengths and weaknesses. Basically, the applied methodologies can be classified into two
categories. One is focusing on the development of statistical models and another is based
on the machine learning approaches.

To account for the integer nature of the crash data, a variety of regression methods that
are based on Poisson distribution as well as some extensions of the Poisson model have
been applied for traffic crash analyses over the years. For example, as an extension of the
Poisson model, the negative binomial (or Poisson-gamma) model was proposed to over-
come potential over-dispersion issues in the crash data that Poissonmodels cannot handle
(Daniels et al. 2010; El-Basyouny and Sayed 2006; Kim andWashington 2006; Lord and Bon-
neson 2005; Lord 2006; Malyshkina andMannering 2010; Miaou and Lord 2003). To address
the under-dispersed issue, Poisson-lognormalmodel have been proposed as an alternative
of themost commonlyusednegativebinomial/Poisson-gammamodel for traffic crash anal-
yses (Miaou, Song, andMallick 2003; Lord andMiranda-Moreno 2008; Aguero-Valverde and
Jovanis 2008). Although the negative binomial (or Poisson-gamma) and Poisson-lognormal
offers more flexibility than the Poisson models, the estimations process can be very com-
plex and the results can be adversely affectedby low sample-mean values and small sample
sizes (Miaou, Song, and Mallick 2003). To handle the crash data that characterized by a
significant amount of zeros, zero-inflated models, such as zero-inflated Poisson and zero-
inflated negative binomial have been developed to account for more zeros than a Poisson
or negative binomial/Poisson-gamma model can deal with (Carson and Mannering 2001;
Lee and Mannering 2002; Kumara and Chin 2003; Shankar et al. 2003; Washington, Kar-
laftis, and Mannering 2010). The extensions and generalization of the Poisson models also
include Conway-Maxwell-Poisson models (Lord and Bonneson 2007) and Gamma models
(Oh, Washington, and Nam 2006). To account for the unobserved heterogeneity from one
roadway site to another, the random-parameter feature has been incorporated in these
generalized Poisson models and the estimated parameters are allowed to vary across each
individual observation in the dataset (Milton, Shankar, and Mannering 2008). Furthermore,
bivariate/multivariatemodel formulations have been proposed to jointly model more than
one crash type simultaneously, since the counts of specific crash types are not independent
(Dong et al. 2015, 2016, 2017, 2018). The applied bivariate/multivariate models including
the multivariate Poisson model (Ma and Kockelman 2006), the bivariate negative binomial
model (Donget al. 2015), themultivariate Poisson-lognormalmodel (Park andLord2007; El-
Basyouny and Sayed 2009; Dong et al. 2014a), themultivariate zero-inflated Poissonmodel
(Dong et al. 2014b), and the multivariate random-parameters zero-inflated negative bino-
mial regressionmodel (Dong et al. 2014c) can better address the correlation issues in crash
data and provide new insights.

Although the Poisson model has served as a starting point for traffic crash analysis
and its extension and generalization formulations have been proposed to account for a
variety of methodological issues associated with traffic crash data for several decades,
researchers have often identified the crash data exhibiting some characteristics that make
the application of the proposed statistical models problematic. Specifically, the statistical
models can be adversely affected by low sample-means and can produce biased estimates
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in small samples (Lord and Mannering 2010). As an alternative, the machine learning
approach based models, including Artificial Neural Network (ANN) and Support Vector
Machine (SVM) models have been applied to crash data and used as data analytic meth-
ods because of their ability to deal with massive amounts of multi-dimensional data. In
addition, because of themodeling flexibility, accurate predictive ability, and good general-
ization ability, the machine learning-based models have been considered as accurate and
generic mathematical models in the field of traffic safety.

Because the commonly used statistical models assume the pre-defined underlying rela-
tionship between dependent and independent variables and the violation of the assump-
tion would lead to erroneous estimation, ANN and Bayesian neural network (BNN) models
have been employed to address the traffic safety issues formany years (Chang 2005; Abdel-
wahab and Abdel-Aty 2002; Xie, Lord, and Zhang 2007; Kunt, Aghayan, and Noii 2011;
Jadaan, Al-Fayyad, and Gammoh 2014; Akin and Akbas 2010). Although both ANN and
BNNmodels have similar multilevel network structures, they are different in predicting the
traffic crashes. For ANN, the weights are assumed to fix. However, the weights of BNN are
assuming to follow a probability distribution and the predictions will be integrated over
all the probability weights. Basically, the ANN can be characterized by three features: net-
work architecture, model of a neuron, and learning algorithms. Though the ANN and BNN
models show better linear/non-linear approximation properties than conventional statis-
tical approaches, these models often cannot be generalized to other data sets (Lord and
Mannering 2010).

The SVM models have recently been introduced for traffic safety analyses (Zhang and
Xie 2007; Li et al. 2008), which are a new class of models that are based on statistical learn-
ing theory and structural risk minimization (Kecman 2005). These models are supposed
to approximate any multivariate function to any desired accuracy with a set of related
supervised learning methods. It has been found that the SVM models showed better or
comparable results to the outcomes predicted by ANN/BNN and other statistical models (Li
et al. 2008; Yu and Abdel-Aty 2014; Chen et al. 2016; Dong, Huang, and Zheng 2015; Ren
and Zhou 2011; Yu and Abdel-Aty 2013; Kecman 2005). However, like ANN and BNN, the
SVMmodels often cannot be generalized to other data sets and they all tend to behave as
black-boxes, which cannot provide the interpretable parameters as statistical models do.
Other than the ANN/BNN and SVM models, other machine learning methods have been
introduced in traffic safety analyses. Abdel-Aty and Haleem (2011) proposed multivariate
adaptive regression splines (MARS) to predict vehicle angle crashes using the data that
obtained from Florida. The results showed that MARS outperformed the NB models. The
proposed MARSmodels showed promising results after screening the covariates using the
random forest. The findings suggested that MARS is an efficient technique for predicting
crashes at unsignalized intersections.

Although more and more influence factors have been incorporated and the proposed
models became more and more advanced, there are still some factors are not available
and the models result in bias estimations and erroneous predictions. The variations in the
effects of variables across the sampled observations that are unknown to the researchers
are referred to as unobserved heterogeneity (Mannering, Shankar, and Bhat 2016). The
unobserved heterogeneity among sampled observations could arise from spatial correla-
tions, temporal correlations, or a combination of two. For the spatial correlations, data col-
lected from the same geographic entity might share unobserved effects. For the temporal
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correlations, data collected from the same geographic entity over successive time periods
could share unobserved effects. To address the issues of unobserved heterogeneity and
overcome the limitations of the statistical models and the machine learning approaches,
we proposed a dynamic state-space model for crash data analyses. The state-space model
framework has been successfully applied in the field of transportation to solve a broad
range of problems (Shumway and Stoffer 2000; Durbin 2000; Stathopoulos and Karlaftis
2003; Dong et al. 2014d), although there aren’t lots of applications in the area of traffic
safety.

The proposed dynamic state-space models can better account for the characteristics of
crash data in terms of non-negative integers with a small range and perform a comprehen-
sive analysis that aims to predict the crash counts. In the proposed state-spacemodels, the
analyzed roadway entity (a roadway segment in this study) has been considered as a system
and the traffic volume has been considered as the control input variable. Two estimation
methods, including KEF and VBAKF algorithms have been developed to estimate the pro-
posed state-space models. The KEF estimation algorithm assumes the measurement noise
follows a Gaussian distribution and the VBAKF algorithm assumes the measurement noise
is unknown. In addition, the outcome of amultivariate regressionmodel that considers the
traffic factors, geometric design features, andenvironmental characteristics as the indepen-
dent variables has been incorporated in the proposed state-spacemodels as an initial value
to describe the state transition process. With the proposed state-spacemodel, we intend to
provide an alternative framework for analyzing crash data that are measured or observed
through a stochastic process.

2. Methodology

The traffic flow has been considered as the control input in the proposed state-space
model. The study assumed that the effects of influence factors on traffic crashes were cap-
tured by the state variables with a logistic output function. Other unobserved factors were
considered as process and sensor noise. The proposed state-space model for traffic crash
prediction assumes that the state of roadway entity at a time t evolved from the prior state
at time t− 1 according to the equation

xt+1 = Atxt + Btqt + wt (1)

where xt is the state vector at time t, qt is the vector containing any control inputs, At is the
state transition matrix, Bt is the control input matrix that applies the effect of each control
input variable in the vector qt on the state vector, and vectorwt denotes process noise that
is zero-mean, white Gaussian, stochastic process with covariance matrixesQ.

For k types of crashes, the state vector that includes k state variables can be written as

Xt =

⎡
⎢⎢⎢⎣
ln λ1t

ln λ2t
...

ln λkt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

β1ituit + ε1

n∑
i=1

β2ituit + ε2

...
n∑
i=1

βkituit + εk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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where λit is the expected number of crashes for crash type i at time t, which is a function of
explanatory variables utk (e.g. roadway geometric design features, pavement conditions,
and environmental characteristics), β is a vector of estimable parameters, and EXP(εi) is a
gamma-distributed error term with mean 1 and variance α.

To evaluate how the changes of geometric design features, pavement conditions, and
environmental characteristics affect traffic safety, the regressionmodels have been embed-
ded in theproposedmodel. Assuming that yt = lnnt , andn is thenumberof observed traffic
crashes, the measurement equation of the roadway entity can be written as

yt = Htxt + vt (3)

where Ht is the transformation matrix that maps the state vector parameters into the mea-
surement domain, and vt is the vector containing the measurement noise terms for each
observation in themeasurement vector, which is assumed to be zero-meanGaussianwhite
noise with covariance R.

The state vector xt cannot be observed and the Kalman filter provides an algorithm to
determine an estimate of xt . As an estimation theory for state-space models, Kalman filter
provides a recursive solution through a linear optimal filtering to estimate state variables.
For the nonlinear system, a linearization processwill be performed to approximate the non-
linear system with a linear time varying (LTV) system at each step, which would result in
an extended Kalman filter (EKF) (Sepasi, Ghorbani, and Liaw 2014). In this study, the EKF
algorithms are employed to estimate the parameters and perform the traffic crash pred-
ication. The employed EKF has several merits. It doesn’t require integrations backward in
time. In addition, it requires noderivations of a tangent linear operator or adjoint equations.
Furthermore, the computational requirements are affordable and comparable to other
commonly used methods (Evensen 2003). Compared to the Kalman filter, the employed
EKF was designed to address the huge computational requirements that are associated
with the error covariance matrix. With the EKF algorithm as the estimation method, the
developed state-space models are referred to as SSM-EKF models. At each step, using the
first order of a Taylor-series, matrices of transition andmeasurement function are linearized
close to the operation point. SSM-EKF model starts filtering with the best available infor-
mation on the initial state and error covariance. The proposed SSM-EKF that involves two
stages: prediction and measurement update is shown below.

Method: SSM-EKF
• Initialize x0 and P0
• For t = 1, 2, . . .
-Prediction:

Project the state ahead X̂−
t = AX̂t−1 + But

Project the error covariance ahead P−
t = APt−1AT + Q

-Update:
Compute the Kalman Gain Kt = P−

t H
T (HP−

t H
T + R)−1

Update estimate with observations ytX̂t = X̂−
t + Kt(yt − HX̂−

t )

Update the error covariance Pt = (I − KtH)P−
k

In the proposed SSM-EKF model, the measurement noise covariance matrix R are
assumed to known. However, in most situations, the noise covariance R is unknown. In



6 C. DONG ET AL.

case of unknown covariance matrix, the variational Bayesian adaptive Kalman filter (Mbal-
awata et al. 2015) is employed and the Markovian dynamic model prior for the unknown
measurement noise covariance is defined as

Rt ∼ p(Rt|Rt−1) (4)

The extract Bayesian filter for Equation (4) is computationally intractable. However, the dis-
tribution can be jointly represented by the filtering distribution of the state and covariance
matrix and approximatedwith the free-form variational Bayesian approximation as follows:

p(xt , Rt|y1:t−1) ≈ N(xt|X̂t ,Pt)IW(Rt|vt , Vt) (5)

where X̂t and Pt are given by the standard Kalman filter, and vk and Vk are the parameters
of the inverse Wishart (IW) distribution. The proposed covariance can be computed as the
mean of the inverse Wishart distribution:

Rt = 1
vk − d − 1

Vk (6)

Särkkä and Nummenmaa (2009) suggested that Equation (4) is hard to construct explicitly
and Särkkä and Hartikainen (2013) proposed a heuristic dynamic model for the covariance

v−
t = ρ(vt−1 − d − 1) + d + 1

R−
t = BRt−1BT (7)

where v−
t andR−

t areprior parameters,ρ is a real number and0 < ρ ≤ 1,which controls the
forgetting of the previous estimates of the measurement covariance matrix by decreasing
the degrees of freedom exponentially, and B is a matrix, 0 < |B| ≤ 1, which can be used to
model the deterministic dynamics of the covariance matrix.

Based on the VNAKF algorithm, the SSM-VBAKF models can be developed, which is
slightly different compared to the SSM-KEFmodels. For the prediction, Equation (8) is com-
puted after projecting the error covariance P−

t . For the update process, set vt = v−
t + 1 and

the update of the measurement noise covariance, as shown in Equation (8), is added at the
end.

Rj+1
t =

(
vt−1 − d − 1
vt − d − 1

)
R−
t +

(
1

vt − d − 1

)
HtP

j+1
t HT

t

+
(

1
vt − d − 1

)
(yt − HtX̂

j+1
t )(yt − HtX̂

j+1
t )T (8)

The iterationwill be continuinguntil the convergence achieved (i.e.N times for j = 1, 2, . . . ,
N). In SSM-VBAKF, the number of iterationsNdepends on theproblems. However, theprevi-
ous research (Mbalawata et al. 2015) found that the algorithm required only a few iterations
to converge (such as N = 5). In addition, a criterion can be set up to determine a suitable
time to stop by monitoring the changes in the estimates at each iteration.

3. Data description

The data are obtained from the Tennessee Roadway Information Management System
(TRIMS) and the Pavement Management System (PMS) that are maintained in the Ten-
nessee Department of Transportation (TDOT). After the initial screening, 1587 roadway
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segments that are in Knox County are chosen for the analyses and a total of 15,179 traffic
crashes were reported on these selected roadway segments from 2010 to 2014. In TRIMS,
the crash data have been classified into five categories according to the injury severities,
which are fatal, incapacitating injury, non-incapacitating injury, possible-injury, and PDO
crashes. Because the number of fatal crashes is much less compared to the number of
other crash categories, the fatal crashes and incapacitating injury crashes have been com-
bined and referred to asmajor injury crashes. Correspondingly, the possible-injury and PDO
crashes have been combined and referred to as no-injury crashes. The non-incapacitating
injury crashes are referred to as minor injury crashes. A few of pervious literature (Chang
and Chien 2013; Wu et al. 2014; Pahukula, Hernandez, and Unnikrishnan 2015) has used
a similar classification method for injury outcomes. The final dataset includes 405 (2.67%)
major injury crashes, 3806 (25.07%)minor injury crashes, and 10,969 (72.26%) PDO crashes.
Individual roadway segment experienced from 0 to 22 crashes per year with amean of 1.91
and a standarddeviationof 2.65. As expected, a significant amount of zeros is observed. The
obtaineddatahavebeenclassified into threegroups. The crashdata from2010 to2012have
been used to develop a regression model and the estimated parameters β can be used to
initialize the state transition matrix A. The crash data of 2013 have been used as the obser-
vation y to calibrate the prediction accuracy of the proposed state-space model and the
crash data of 2014 have been used as the verification set.

For the selected 1587 roadway segments, the traffic factors, geometric design features,
pavement factors, and environmental characteristics are linked to the number of crashes
through the common variable id_number. In other words, the dataset contains detailed
information on roadway segments. The considered traffic factors include the thousandpas-
senger car annual average daily traffic (AADT), thousand truck AADT, and posted speed
limits. The thousand passenger car AADT from 2010 to 2014 varies from 0.72 to 30.24 with
a mean of 7.36 and a standard deviation of 6.78 and the thousand truck AADT from 2010
to 2014 varies from 0.12 to 2.66 with a mean of 0.76 and a standard deviation of 0.67. The
variable of the posted speed limit has been considered as the categorical variable with two
classes. For 65.97% (5235) roadway segment, the posted speed limit is less than 55 mph
and the posted speed limit of 34.03% (2700) roadway segment is no less than 55 mph.

Important measurements of geometric design features considered in this study include
segment length, degree of horizontal curvature, median widths, outsider shoulder widths,
number of through lanes, lane widths, median types, and shoulder type. Among them,
the segment length, degree of horizontal curvature, median widths, and outsider shoul-
der widths are considered as the continuous variables and the others are considered as
the categorical variables. Other than the traffic factors and geometric design features, the
impacts of pavement surface characteristics are considered to better address traffic safety
issues for roadway design and maintenance. The considered pavement surface character-
istics include the international roughness index (IRI) and rut depth (RD). The analyzed IRI
varies from 25.54 to 182.75with amean of 65.45 and a standard deviation of 27.86, which is
calculated using a quarter-car vehiclemathmodel and the response is accumulated to yield
a roughness index with units of slope (in/mi). Another pavement condition indicator is the
RD, which is measured at roadway speeds with a laser/inertial profilograph. The analyzed
RD varies from 0.07 to 0.57 with a mean of 0.15 and a standard deviation of 0.07.

The environmental factors, including terrain types, lighting condition, and land use type
are considered. Two terrain types are examined, which include rolling terrace (62.26%)
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Table 1. Summary statistics of analyzed continuous variables.

Variable Mean Std. Dev. Min. Max.

Independent variable
The number of major injury crashes per year per roadway segment 0.05 0.30 0 4
The number of minor injury crashes per year per roadway segment 0.48 1.17 0 10
The number of no injury crashes per year per roadway segment 1.38 2.36 0 19
Traffic factors
Thousand passenger car AADT 7.36 6.78 0.72 30.24
Thousand truck AADT 0.76 0.67 0.12 2.66
Geometric design features
Segment length (miles) 0.82 1.13 0.17 12.43
Degree of horizontal curvature 1.51 3.35 0.00 14.24
Median widths 1.12 2.24 0.00 12.49
Outside shoulder widths 3.35 1.96 3.37 8.25
Pavement factors
International roughness index 65.45 27.86 25.54 182.75
Rut depth (in.) 0.15 0.07 0.07 0.57

Table 2. Summary statistics of analyzed categorical variables.

Variable Category Frequency Percent

Traffic factor
Posted speed limits < 55mph 5235 65.97

≥ 55mph 2700 34.03
Geometric design features
Number of through lanes 6 1480 18.65

4 4105 51.73
2 2350 29.62

Lane widths (ft) 12 2170 27.35
11 4185 52.74
10 1580 19.91

Median type 1 for non-traversable median 2990 28.80
0 for traversable median 4945 20.98

Shoulder type 2 for pavement 1725 50.22
1 for gravel 4140 37.68
0 for dirt 2070 62.32

Environmental factors
Terrain type 1 for mountainous 2995 37.74

0 for rolling 4940 62.26
Land use type 2 for residential 4105 51.73

1 for commercial 1905 24.01
0 for rural 1925 24.26

Indicator for lighting 1 for lighting exists on the roadway segments 3505 44.17
0 for others 4430 55.83

and mountainous terrace (37.74%). Lighting condition was considered as a category vari-
able, which indicates whether lighting devises are provided at the roadway segments.
Three types of land use are considered, including commercial (24.01%), rural (24.26%), and
residential (51.73%). These variables are considered because they might have potential
significant effects on traffic safety. The descriptive statistics of continuous variables and
categorical variables are shown in Tables 1 and 2, respectively.

4. Modeling results

TheMATLABwas employed formodel development. The data from2010 to 2012were used
as the input to develop a MVNB regression models and the estimate parameters, as shown
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in Table 3, were used as the initial parameters for the state-spacemodels. More background
information about MVNB regression models can be found in Done et al. (2014b and 2015).
For the proposed state-space models, two types of estimation algorithms were employed,
which are KEF and VBKEF algorithms and the developedmodels are referred to as SSM-KEF
model and SSM-VBAKF model. The MVBN models that are based on four-year data were
also employed as the comparisonmethod to verify the effectiveness of the proposed state-
space models.

Table 3 provides the estimation results of the MVNB regression models that are based
on three-year data. The results show that the variables of thousand passenger car AADT,
thousand truck AADT, degree of horizontal curvature, rut depth, and mountainous terrain
type have significant positive effects on major injury crashes, and the variables of median
widths, posted speed limits less than 55mph, non-traversable median, residential land use
type, and lighting exists on the roadway segments have significant negative effects on
major injury crashes. In other words, for the continuous variables, increasing the values
of thousand passenger car AADT, thousand truck AADT, degree of horizontal curvature,
and rut depth will reduce the likelihood of major injury crashes, and decreasing the values
of median widths will increase the likelihood of major injury crashes. For the categorical
variables, compared to the rolling terrain type, the mountainous terrain type is associated
with a higher risk of major injury crashes. The posted speed limits less than 55 mph, non-
traversable median, residential land use, and lighting exists on the roadway segments are
associated with lower risk of major injury crashes, compared to the conditions of posted
speed limits greater than (or equal to) 55 mph, traversable median, commercial and rural
land use, and no lighting existing, respectively.

All the significant variables for the major injury crashes have significant effects for the
minor injury and non-injury crashes and the direction of the significant variables are con-
sistent. The comparison of the estimated parameters and t-statistics in Table 3 suggests
not only that the significance level of the examined factors are quite consistent, but also
that the estimated coefficients have the expected and consistent algebraic sign. How-
ever, for the minor injury crashes, one more variable – commercial land use has been
found to have a significant positive effect. Other than the variable of commercial land
use, three more variables, including segment length, outside shoulder widths, and num-
ber of through lanes have been found to have significant effects on non-injury crashes.
Among them, segment length and number of through lanes are positively associated with
non-injury crashes and outside shoulder widths is negatively associated with non-injury
crashes.

Theobtained coefficients areusedas the initial values for theproposed state-spacemod-
els. The proposed models estimate a process by using a form of feedback control. In other
words, the filter estimates the process state at some time and then uses themeasurements
as the feedback. As such, the a priori estimates are obtained for the next step through the
predictor equations projecting forward the current state and error covariance estimates.
An improved a posteriori estimate is obtained through themeasurement update equations
by incorporating a new observation into the a prior estimate. The convergence process of
Kalman gains of SSM-KEF and SSM-VBAKF models are shown in Figure 1. It can be seen
that the SSM-VBAKF model has better performances in terms of narrow search space and
more efficient convergence process. Compared to the SSM-VBAKF model, the proposed
SSM-KEFmodel can achieve the same accuracywith comparable search space. Because the
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Table 3. The estimated parameters fromMVNBmodel.

Major injury crashes Minor injury crashes PDO crashes

Variables Estimates Std. Err. t Value Pr > |t| Estimates Std. Err. t Value Pr > |t| Estimates Std. Err. t Value Pr > |t|
Intercept 2.44 0.58 4.23 < .0001 0.97 0.25 3.95 0.0001 2.58 0.75 3.45 0.0006
Thousand passenger car AADT 0.70 0.15 4.57 < .0001 1.26 0.18 7.15 < .0001 2.58 0.62 4.17 < .0001
Thousand truck AADT 0.68 0.29 2.39 0.0173 0.44 0.13 3.53 0.0004 0.71 0.23 3.02 0.0027
Segment length (miles) – – – – 5.92 2.03 2.91 0.0037 0.12 0.05 2.58 0.0100
Degree of horizontal curvature 7.09 3.26 2.18 0.0299 0.81 0.06 14.16 < .0001 5.07 0.37 13.66 < .0001
Median widths −0.76 0.14 −5.31 < .0001 −4.40 1.39 −3.17 0.0016 −8.64 3.64 −2.37 0.0179
Outside shoulder widths – – – – −1.21 0.13 −9.59 < .0001 −8.79 0.95 −9.23 < .0001
Rut depth (in.) 0.52 0.19 2.75 0.0061 1.81 0.11 16.45 < .0001 9.52 0.70 13.53 < .0001
Posted speed limits < 55mph −4.24 0.66 −6.41 < .0001 −0.88 0.24 −3.67 0.0003 −0.41 0.08 −5.12 < .0001
Number of through lanes (3 lanes) 7.07 1.09 6.50 < .0001 2.42 0.95 2.54 0.0113 4.37 1.70 2.57 0.0104
Non-traversable median −8.30 1.29 −6.41 < .0001 −0.35 0.07 −5.33 < .0001 −1.24 0.48 −2.56 0.0108
Mountainous terrain type 0.44 0.11 4.12 < .0001 0.66 0.06 10.34 < .0001 8.68 2.52 3.45 0.0006
Residential land use −2.82 1.13 −2.48 0.0133 −0.99 0.16 −6.21 < .0001 −0.76 0.24 −3.17 0.0016
Commercial land use – – – – 0.28 0.06 4.89 < .0001 2.62 1.09 2.39 0.0169
Lighting exists on the roadway segments −0.67 0.13 −5.12 < .0001 −4.36 0.87 −5.01 < .0001 −1.39 0.31 −4.56 < .0001
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Figure 1. The comparison of convergence process of Kalman gains. (a) The convergence process of
Kalman gains of SSM-EKF model, (b) The convergence process of Kalman gains of SSM-VBAKF model.

SSM-VBAKF model allows the usage of unknown measurement noise covariance matrix, it
provides more flexible and convincing results.

The developed SSM-KEF and SSM-VBAKF models have been used to predict the crash
counts for the analyzed 1538 roadway segments. The MVNB models are used as a com-
parisonmethod. Two commonly used evaluationmeasurements, includingMean Absolute
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Table 4. Comparison of prediction results.

Major injury crashes Minor injury crashes No-injury crashes Total

Observation
Observed mean 0.06 0.45 1.32 1.82
Observed Std. Dev 0.33 1.15 2.28 2.56

SSM-KEFmodel
Predicted mean 0.20 0.50 1.33 2.03
Predicted Std. Dev. 0.54 1.50 2.69 3.07
MAE 0.15 0.14 0.26 0.49
RMSD 0.37 0.48 0.63 0.87

SSM-VBAKFmodel
Predicted mean 0.12 0.46 1.17 1.75
Predicted Std. Dev. 0.32 1.12 2.44 2.67
MAE 0.11 0.19 0.25 0.44
RMSD 0.25 0.35 0.56 0.68

MVNBmodel
Predicted mean 0.21 0.78 1.70 2.70
Predicted Std. Dev. 0.64 1.62 3.04 3.48
MAE 0.17 0.35 0.50 0.97
RMSD 0.44 0.71 0.97 1.46

Error (MAE) and Root mean squared error (RMSE) have been employed to assess themodel
performances in terms of prediction accuracy and robustness. The prediction results are
shown in Table 4. Results in Table 4 show that the predicted means from the proposed
SSM-VBAKF model (0.12, 0.46, 1.17, and 1.75 for a major injury, minor injury, no-injury, and
all crashes, respectively) are very close to the observed means (0.06, 0.45, 1.32, and 1.82).
The SSM-KEF model results in a mean of 0.20, 0.50, 1.33, and 2.03 for major, minor, and no-
injury crashes, which is comparable to the results of SSM-VBAKF model. Compared to the
SSM-VBAKF and SSM-KEFmodels, theMVNBmodel results in amean of 0.21, 0.78, 1.70, and
2.70, which indicates theworse performances.Webelieve that a very importation feature of
the proposedmodel is that it can provide a good prediction of the chance that the roadway
segment is in the crash-free state or some crash-prone propensity states.

For all the observed samples, the proposed SSM-VBAKF model results in a MAE of 0.11,
0.19, 0.25, and 0.44, and a RMSD of 0.25, 0.35, 0.56, and 0.68 for a major injury, minor injury,
no-injury, and all crashes, respectively. The SSM-KEF model results in a MAE of 0.15, 0.14,
0.26, and 0.49, and a RMSD of 0.37, 0.48, 0.63, and 0.87 for major injury, minor injury, no-
injury, and all crashes, respectively. The MVNB model results in a MAE of 0.17, 0.35, 0.50,
and 0.97, and a RMSD of 0.44, 0.71, 0.97, and 1.46 for a major injury, minor injury, no-injury,
and all crashes, respectively. The results suggest that the proposed SSM-VBAKFmodel pre-
dicts better than the proposed SSM-KEFmodel andMVNBmodel. In summary, compared to
the SSM-KEF model and MVNBmodel, the proposed SSM-VBAKF model results in the most
accurate predictions that aremeasuredMAE and RMSD.We hypothesize that the proposed
state-spacemodels better addresses the issue of temporal correlation and allows for excess
zero counts in correlated data.

The findings indicate that the predictions from the proposed SSM-VBAKF models have
significant improvements over the comparable models, in both accuracy and robustness.
Compared to the SSM-KEF model, the RMSD improvement of the proposed SSM-VBAKF
model ranges from 12.34% to 33.39% with a mean of 23.81%. Compared to the MVNB
model, the RMSD improvements of the proposed SSM-VBAKF model ranges from 42.80%
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to 53.26% with a mean of 47.74%. Clearly, the improvement is significant for the proposed
models overMVNBmodels. Therefore, the proposedmodel seems to be a better alternative
for crash count predictions. The best-performing result of the proposed SSM-VBAKFmodel
for major injury crashes has a RMSD of 0.25, an 33.39% and 44.51% improvement from the
SSM-KEFmodel andMVNBmodel, respectively. The proposed SSM-VBAKFmodel performs
worse for no-injury crashes, with a 0.56 RMSD for all observed samples. However, it is still
better than the results of the SSM-KEFmodel andMVNBmodel and the prediction accuracy
has been improved by 12.34% and 42.80%, respectively.

The proposed models have better performances in terms of small error variances than
the comparison models, since the proposed models are based on a dynamic state-space
model, which contains a dynamic equation governing the state dynamics and the obser-
vations have been used to calibrate the prediction accuracy. The overall performances
of the proposed SSM-VBAKF model for all crashes show an 22.09% improvement over
the SSM-KEF model and an 53.26% improvement over the MVNB model. It is clear that
the predictions obtained from the proposed models are superior to those obtained from
the comparison models. The greatest difference is demonstrated for the no-injury crashes
where the proposed SSM-VBAKF model yields a RMSD of 0.56 compared to a 0.97 RMSD
value from the MVNB models. The improvements of the proposed SSM-KEF model over
the MVNB model are also significant, which are 44.51%, 50.38%, 42.80%, and 53.26% for a
major injury, minor injury, no-injury, and all crashes, respectively. The predicted results are
compared to the observed values and the results are shown in Figure 2.

Figure 2(a) displays the empirical frequency distribution of major injury crashes and the
predicted distribution from SSM-VBAKF, SSM-KEF, andMVNBmodels. As expected, a signif-
icant amount of zeros (representing crash-free states) is present. Such a pattern is typical
of roadway segment based crash counts. It is evident that the proposed models provide
a sufficient fit to the multivariate correlated crash data. The results in Figure 2 (b) to (d)
are consistent with Figure 2 (a), which shows the proposed models can better account
for the over-dispersion issues and a significant amount of zeros in correlated crash data.
The comparison results suggest that the SSM-VBAKF models provide a better goodness
of fit compared to the SSM-EKF models and MVNB models. Compared to the proposed
SSM-VBAKF model, the proposed SSM-EKF model provides comparative prediction results
and the proposed SSM-VBAKF model and SSM-KEF model give a better goodness of fit to
the data than MVNB models. The findings reveal that the proposed models have superior
predictions while the MVNB model has relatively large overestimations. These examples
demonstrate the superior prediction accuracy and robustness of the proposed model for
crash count predictions across injury severities.

The prediction results are further compared in Figure 3. From the plots of predicted
values versus measurement values, we see that the predicted values from the proposed
SSM-VBAKF are quite close to the measurement values for all crash types. The results are
further confirming the findings that the proposed SSM-VBAKF models are the superior
alternative models for crash count predictions.

As the graphical analysis of the crash count patterns shows, the proposedmodels, partic-
ularly for the zero crash counts, capture the general pattern of the crash count distribution
and reflect in a manner of crash count distribution across injury severities. In addition, the
proposed models enable the predicted crash counts to retain a smoother pattern, which
is less sensitive to the high-frequency variations of crash counts, in contrast to the pattern
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Figure 2. The frequency distribution of crash counts. (a) Distribution comparison of major injury
crashes, (b) Distribution comparison of minor injury crashes, (c) Distribution comparison of no-injury
crashes, (d) Distribution comparison of all crashes.

Figure 3. The comparisonofmodel performances. (a) Predictedvalueof SSM-VBAKFmodel vs. observed
value, (b) Predicted value of SSM-KEF model vs. observed value, (c) Predicted value of MVNB model vs.
observed value.
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obtained from the comparison models. In other words, we believe that the robustness of
the proposed models is an advantage.

5. Conclusions

In this study, we presented a dynamic state-space model with two estimation methods.
The proposed dynamic state-space models can better account for the characteristics of
crash data in terms of non-negative integers with a small range and perform a com-
prehensive analysis that aims to predict the crash counts. With the SSM-KEF models,
the estimation process assumes that the measurement noise follows Gaussian distribu-
tion. In the SSM-VBAKF models, the measurement noise covariance matrix is assumed
to unknown. To identify dynamics relationship between the examined variables and the
traffic crashes, and enhance the prediction accuracy and robustness, the estimated coef-
ficients from the multivariate regression models have been incorporated as the initial
values for the proposed state-space models. Five-year crash data have been employed
to demonstrate the application of the proposed models with two different estima-
tion algorithms. The investigation results provide sufficient evidence for the following
conclusions:

(1) The proposed models have superior performances in terms of prediction power com-
pared to the MVNB models. The overall performances of the proposed SSM-VBAKF
and SSM-KEF models for all crashes show an 47.74% and 24.97% RMSD improvement,
respectively, over the MVNB model.

(2) The proposed SSM-VBAKF model has better prediction accuracy and robustness com-
pared to the proposed SSM-KEF model and the prediction accuracy that is measured
by RMSD can be improved by 23.81%.

(3) The proposed models provide a sufficient fit to the multivariate correlated crash data.
The results show that the proposedmodels can better account for the over-dispersion
issues and a significant amount of zeros in correlated crash data.

(4) The proposed models can capture the general pattern of the crash count distribution
and reflect in a manner of crash count distribution across injury severities.

The findings suggest that the proposedmodel can better address the heterogeneity issues
in correlated crash data and is a superior alternative for traffic crash predictions. The pro-
posed models can perform traffic crashes prediction for a given facility. The proposed
methodology could be applied to other roadway networks if appropriate influence factors
are available. The application of the proposed models will enable academic researchers,
traffic engineers, and decision-makers in government agencies to gain the information on
traffic crash predications. By employing the proposedmodelswith relative cases and devel-
oping them for various time periods, the traffic and transportation engineers can obtain
traffic crash predictions with their needs. Further investigation of the proposed models
includes the predictions of dynamic spatial-temporal pattern in crash data.
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